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Abstract 
 

The large strain deformation response of 6061-T6 and Ti-6Al-4V has been evaluated over a 
range in strain rates from 10-4 s-1 to over 104 s-1.  The results have been used to critically 
evaluate the strength and damage components of the Johnson-Cook (JC) material model.  A 
new model that addresses the shortcomings of the JC model was then developed and evaluated. 
The model is derived from the rate equations that represent deformation mechanisms active 
during moderate and high rate loading.  Another model that accounts for the influence of void 
formation on yield and flow behavior of a ductile metal (the Gurson model) was also evaluated.  
The characteristics and predictive capabilities of these models are reviewed. 
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Introduction 
 

Background 
 
Many modeling problems involving structural materials involve accurately representing the 
high rate deformation response.  Examples include the modeling of material processing 
operations as well as the in-service performance of materials.  Typical material processing 
operations, in which high rate deformation is observed, include material cutting, numerous 
forming operations (including rolling and forging) and material polishing.  Typical in-service 
performance problems, in which high rate deformation is observed, include the ballistic 
penetration and perforation of armor materials, the crash response of automobiles and various 
accident problems involving aerospace structures.  Many of these problems are difficult to 
accurately model.  Much of this difficulty arises from the large strains and adiabatic heat 
produced which, in turn, causes increases in temperature with resulting changes in material 
microstructure, material properties and deformation mechanisms.  Large changes in strain rate 
are also produced.  In addition, deformation can produce instabilities in the form of adiabatic 
shear bands.  Voids can also be produced that, in turn, can influence flow behavior and serve as 
a pre-cursor to fracture.  Thus, accurate material models are necessary for understanding 
complex deformation behavior (and strength) as well as failure response. 
 
Objectives 
 
Material models which can adequately represent the deformation response during high rate 
loading must account for large strains (and the resulting strain hardening or softening), as well 
as large changes in strain rate and temperature.  Several models have been developed which can 
represent, to varying degrees, the high rate deformation response of materials.  Examples 
include models by Johnson-Cook (JC) [1-3], Zerilli-Armstrong (ZA) [4-6], and Follansbee-
Kocks (mechanical threshold stress model) [7].  Several of these models have been introduced 
into finite element codes (e.g. DYNA3D).  Of these models, the JC model is much more widely 
used.  The JC model was developed during the 1980’s to study impact, ballistic penetration and 
explosive detonation problems.  The model has proven to be very popular and has been 
extensively used by a number of national laboratories, military laboratories and private industry 
to study high rate, large strain problems.  The reasons for the popularity of this model include 
the simple form of the constitutive equations and the availability of constants used in the 
equations for a number of materials.  The JC material model also has a cumulative damage law 
which can be used to assess failure. 
 
In this paper, we examine the JC model and its ability to represent the large strain deformation 
behavior of two important structural materials - an α−β titanium alloy (Ti-6Al-4V) and a 
moderate strength aluminum alloy (6061-T6).  The model has been evaluated over a range of 
strain rates from 10-4 s-1 to over 104 s-1.  The damage law was also evaluated for its ability to 
predict failure in these materials.  A new model is then developed and evaluated that addresses 
some of the shortcomings observed with the JC model.  The model is derived from the rate 
equations that represent deformation mechanisms active during moderate and high rate loading. 
Another model that accounts for the influence of void formation on yield and flow behavior of 
a ductile metal (the Gurson model [8]) was also evaluated.  The characteristics and predictive 
capabilities of these models are then reviewed. 
 
 
 

Materials, Experiments and Results 
 
 



The materials used in this study were obtained from commercial sources.  The 6061 alloy was 
received as a hot, cross-rolled plate in the T6 temper.  The Ti-6Al-4V alloy was processed 
according to the AMS 4911 specification, which produced an equiaxed alpha and transformed 
beta microstructure. 
 
High rate testing was done in both compression and tension using the split Hopkinson pressure 
bar technique and data was obtained at strain rates of 103 - 104 s-1.  In the compression tests, the 
strain histories for the incident and transmitted waves in the elastic pressure bars were 
measured and analyzed to determine the nominal stress - strain - strain rate response of the 
sample.  In the tension tests, the strain history in the elastic pressure bars were used to obtain 
the stress-time response of the sample.  The strain and strain rate behavior of the sample was 
obtained from high speed photographic images derived from a framing camera.  
 
The true stress-true strain data for 6061-T6 aluminum obtained in tension and compression is 
shown in Fig. 1.  The experiments in tension were conducted at a strain rate of 8000 s-1, and 
samples were tested with the tensile axis parallel to the longitudinal and transverse orientations 
in the plate.  The experiments in compression were conducted at a strain rate of 4000 s-1, and 
samples were tested with the compression axis parallel to the longitudinal, transverse and 
through-thickness orientations in the plate.  Data for “elastic” loading of the sample can not be 
obtained in these tests due to wave propagation effects.  The stress-strain data shown in Fig. 1 
can be considered valid once the samples have yielded plastically, which is accompanied by 
stress and strain rate uniformity in the sample.  The data for the different orientations of testing 
show that in both tension and compression the stress-strain response is highly isotropic.  This is 
especially true in compression, in which the curves for the three orientations fall virtually on 
top of one another.  The compression samples deformed to the limits of the experiment without 
failure, while the tension samples failed after a strain of .26. 
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Figure 1. True stress-true 
strain data for 6061-T6 aluminum 
obtained in tension and 
compression with the split 
Hopkinson pressure bar 
apparatus.  The experiments in 
tension were conducted in two 
different orientations and a strain 
rate of 8000 s-1.  The experiments 
in compression were conducted in 
three different orientations and a 
strain rate of 4000 s-1. 
 
 

 

 



 
Johnson-Cook Material Model 

 
Background 
 
The JC model is empirically based and represents the flow stress with an equation of the form,   
 
 σ = [A + Bεn][1 + Clnε*][1 - T*m] (1) 
 
where σ is the effective stress, ε is the effective plastic strain, ε* is the normalized effective 
plastic strain rate (typically normalized to a strain rate of 1.0 s-1),  is the homologous 
temperature, n is the work hardening exponent and A, B, C and m are constants.  The values of 
A, B, C, n and m are determined from an empirical fit of flow stress data (as a function of 
strain, strain rate and temperature) to Eqn. (1).  For high rate deformation problems, we can 
assume that an arbitrary percentage of the plastic work done during deformation produces heat 
in the deforming material.  For many materials, 100% of the plastic work becomes heat in the 
material.  Thus the temperature used in Eqn. (1) can be derived from the increase in 
temperature according to the following expression 

T*

 

 
∆T = α B

ρ c (n+1)
εn+1

 (2) 
 
where ∆T is the temperature increase, α is the percentage of plastic work transformed to heat, c 
is the heat capacity and ρ is the density.   
 
Fracture in the JC material model is derived from the following cumulative damage law 
 

 
D = Σ  ∆ε

εf  (3) 
 
in which εf = [D1 + D2exp(D3σ*)][1+D4lnε*][1+D5T*] (4) 
 
where ∆ε is the increment of effective plastic strain during an increment in loading and σ* is the 
mean stress normalized by the effective stress.  The parameters D1, D2, D3, D4 and D5 are 
constants.  Failure is assumed to occur when D = 1.  The current failure strain in the problem 
(εf) is thus a function of mean stress, strain rate and temperature.  The constants for the JC 
model used in the evaluations in the next section are given in Table 1 
 
 

Table 1 
Johnson-Cook constants for Ti-6Al-4V and 6061-T6 

 
 A 

(MPa) 
B 

(MPa) 
n C m D1 D2 D3 D4 D5 

6061-T6 324 114 .42 .002 1.34 -0.77 1.45 -0.47 0.0 1.60 
Ti-6Al-4V 862 331 .34 .012 .8 -0.09 0.25 -0.5 .014 3.87 

 
 
 

Model evaluation 

 



 
The adiabatic stress-strain behavior for the 6061-T6 alloy predicted by the JC material model is 
shown in Fig. 2 for loading in tension, compression and shear.  The cumulative damage 
predicted by the failure model is also shown in the figure, and the failure strains for the three 
stress states are indicated on the stress-strain curve.  The three stress states show different 
damage curves because of the influence of the mean stress term on εf in Eqn (4).  The stress-
strain response predicted by the material model is compared against the experimental data in 
both tension and compression in Fig. 3.  The yield strength predicted by the JC model correlates 
very well with the experimental results.  However, the experimental stress-strain curves work 
harden at a higher rate.  This is not a fundamental shortcoming of the model, since higher work 
hardening rates are possible with larger values of B and n in Eqn. (1).  The failure strain in 
tension as predicted by the JC material model (εf = .52) is significantly higher than obtained 
experimentally (εf = .26).  This is a significant difference and the physical origins of this 
discrepancy need to be understood.  However, detailed studies of failure models are outside the 
scope of this paper.  
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Figure 2. Adiabatic true stress-true strain 
behavior for 6061-T6 at a strain rate of 6000 s-1 
predicted by the Johnson-Cook material model.  
Results are presented for loading in tension, 
compression and shear.  The cumulative damage 
predicted by the material model is also shown.  
The failure point along the stress-strain curve is 
shown for tension (T), shear (S) and compression 
(C). 

Figure 3. Comparison between the stress-strain 
behavior predicted by the JC material model and 
experimental data for the 6061-T6 alloy. 
 

 
The stress-strain rate response for the 6061-T6 alloy is compared against the predictions of the 
JC model in Fig. 4.  Data was obtained from the work of Nicholas [9] as well as the results of 
this study.  Here significant deviations between model predictions and experimental results are 
evident.  The experimental data shows a dramatic increase in strength above a strain rate of 103 
s-1.  This increase in strength has been observed in a number of metals [10] and is generally 
recognized as resulting from a change in deformation mechanism.  At lower strain rates, the 
deformation rate is controlled by the cutting or by-passing of discrete obstacles by dislocations.  
At higher rates, the deformation rate is controlled by phonon or electron drag on moving 
dislocations.  These two mechanisms are represented by different deformation rate equations, 
which produces the dramatic change in behavior on going from low strain rates to high strain 
rates.  Such dramatic changes in behavior are outside the scope of the JC model.  We present a 
model in the next section which accounts for these mechanism changes.  
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Figure 4. Comparison between 
the stress-strain rate behavior 
predicted by the JC material 
model and experimental data for 
the 6061-T6 alloy.  Experimental 
data was derived from a 
compilation of ultimate tensile 
strength results from this study 
and data from reference 9.   
 

 
 
The predictions of the JC model for the Ti-6Al-4V alloy are shown in Fig. 5 and compared 
against experimental data in Figs. 6 and 7.  Data in Figs. 6 and 7 were obtained from the work 
of Wulf [11], Meyer [12] and Follansbee and Gray [13].  The same capabilities and limitations 
of the material model that were observed for the 6061-T6 alloy were noted for the Ti-6Al-4V 
alloy.  The model can adequately represent work hardening behavior in both materials.  The 
most serious limitation was its inability to predict variations of flow stress with strain rate as 
shown in Fig. 7.  The failure model predicted the correct ductility in tension for the Ti-6Al-4V 
alloy (εf = .15) but, in compression, the model predicted a significantly higher ductility than 
observed experimentally.   
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Figure 5. Adiabatic true stress-
true strain behavior for the Ti-
6Al-4V alloy at a strain rate of 
5000 s-1 as predicted by the JC 
material model.  Results are 
presented for loading in tension, 
compression and shear.  The 
adiabatic temperature rise is also 
shown in the figure.  The failure 
point along the stress-strain curve 
is shown for the three stress 
states. 
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Figure 6. Comparison between 
the stress-strain behavior 
predicted by the JC material 
model and experimental data for 
the Ti-6Al-4V alloy (obtained 
from references 11-13 ).   
 

 
 
 
 
 
Figure 7. Comparison between 
the stress-strain rate behavior 
predicted by the JC  material 
model and experimental data for 
the 6061-T6 alloy. 
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Mechanism-Based Material Model 
 
Rate equations 
 
We now derive a rate equation representing deformation that can be controlled by two 
sequential processes - 1) the cutting (or by-passing) of obstacles by dislocations or 2) the drag 
on moving dislocations by phonons or electrons.  The problem is illustrated schematically in 
Fig. 8, which shows dislocations in contact with discrete obstacles that have an average spacing 
d.  After Frost and Ashby [14], the average velocity (v) for a dislocation moving through these 
obstacles is 
 
 v = d / (t1 + t2) (5) 
 

 

where t1 is the time required to cut or by-pass the obstacle and t2 is the time spent moving to the 
next obstacle.  Different rate equations represent the deformation kinetics associated with 
discrete obstacles and drag.  Let ε  represent the strain rate when deformation is 1



controlled by the cutting (or by-passing) of discrete obstacles, and ε2 represent the strain rate 
when deformation is controlled by drag on moving dislocations.  Since  
 
 ε = ρbv (6) 
 
where ε  is the strain rate, b is the Burger’s vector and ρ is the mobile dislocation density, 
 

 

εeff = d
d
ε1

 + d
ε2  (7) 

 
where εeff is the effective strain rate on the slip plane shown in Fig. 8.  Thus 
 

 
εeff = ε1ε2

ε1 + ε2  (8) 
 
 
 
  

slip plane

dislocation 
position 1

dislocation 
position 2

σ d

Figure 8. Dislocations on a 
slip plane in contact with 
discrete obstacles.  The shear 
stress on the slip plane is σ and 
the average spacing between 
obstacles is d.  At high strain 
rates, the dislocation velocity 
(and therefore strain rate) is 
determined by the rate at which 
the discrete obstacles are 
bypassed or the rate at which 
the dislocation moves from one 
discrete obstacle to the next. 

 
The rate equation for discrete obstacle controlled plasticity [15] can be taken as 
 

 
ε1 = ε0exp - Q

kT
(1-σ

τ
)

 (9) 
 
where ε0 is a constant, Q is an activation energy, k is Boltzmann’s constant, σ is the stress and τ 
is the strength of the obstacle at 0K.  At constant temperature, the equation can be taken as  
 
 ε1 = Aexp(Bσ) (10) 
 
where A and B are constants.  The rate equation for phonon or electron drag controlled 
plasticity can be taken as 
 
 ε2 = CσD (11) 
 
where C and D are constants.  Several theoretical treatments have shown that D approaches 1 
[16, 17].  We will use the general form of the rate equation shown in Eqn (11). 
 
 
Model evaluation 
 
 



The model, as represented by Eqns (8), (10) and (11), was evaluated against the stress-strain 
rate data for the 6061-T6 and Ti-6Al-4V alloys shown in Figs. 4 and 7, respectively.  The 
constants for obstacle controlled plasticity (A and B) were evaluated in the strain rate range 
where this mechanism is dominant.  Similarly, the constants for drag controlled plasticity (C 
and D) were evaluated in the strain rate range where this mechanism is dominant.  Figure 9 
shows a comparison of the stress-strain rate response predicted by the mechanism-based 
material model and experimental data for the 6061-T6 alloy.  Similarly, Figure 10 shows a 
comparison of the stress-strain rate response predicted by the mechanism-based material model 
and experimental data for the Ti-6Al-4V alloy.  The figures also show the regions of the stress-
strain curves that are dominated by discrete obstacle plasticity and by drag controlled plasticity.  
For both alloys, the agreement between the model predictions and experimental data is 
excellent.  
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Figure 9. Comparison between the stress-strain 
rate behavior predicted by the mechanism-based 
material model and experimental data for the 
6061-T6 alloy.  The figure shows the regions of the 
stress-strain rate curve that are dominated by 
discrete obstacle plasticity and drag controlled 
plasticity. 

Figure 10. Comparison between the stress-
strain rate behavior predicted by the mechanism-
based material model and experimental data for 
the Ti-6Al-4V alloy. The figure shows the regions 
of the stress-strain rate curve that are dominated 
by discrete obstacle plasticity and drag controlled 
plasticity 

 
Gurson Void Growth Model 

 
Observations have been made that ductile fracture in metals is related to the nucleation and 
growth of voids.  Conventional plasticity models, e.g. von Mises, are based on the assumption 
of plastic incompressibility and can not predict the growth of voids during yielding.  Studies 
have indicated [18-20] that void growth during tensile loading is related to the hydrostatic 
component of stress and that this porosity increase directly affects material yielding.  In these 
observations it was assumed that the material surrounding a void was incompressible. Gurson 
proposed [8] a pressure sensitive macroscopic yield surface which relates void growth to the 
evolution of microscopic (pointwise physical quantities of the matrix material) and macroscopic 
quantities to account for the behavior of void-containing solids. Here, macroscopic refers to the 
average values of physical quantities, which represent the material aggregate behavior. As 
defined by Gurson, the yield surface for a ductile material is: 
 

 
Φ = ( q

σo
)
2
 + 2q1 f cosh(-3q2p

2σo
)-(1+q2f2) = 0

 (12) 
 
where σo is the tensile flow stress of the microscopic matrix material, q and p are the equivalent 
stress and hydrostatic stresses of the macroscopic material and f is the current void volume 

 



fraction which is a function of the initial porosity, the void growth and nucleation during 
yielding. The material parameters q1, q2 are defined by Gurson.  For the current study, the 
Gurson model was modified to correctly account for the evolution of plastic strain in the micro 
(matrix) material and to account for strain rate sensitivity. The model was added to the finite 
element code DYNA3D. 
 
The response of a notched bar under uniaxial tensile loading was simulated to demonstrate the 
DYNA3D application of the Gurson model.  Substantial hydrostatic tension is created in the 
notched regions of the bar for this type of loading. This hydrostatic stress accelerates void 
growth and leads to the eventual coalescence of voids and ductile failure of the bar. Failure was 
assumed to correspond to the loss of load carrying capability in this displacement controlled 
simulation.  The bar was assumed to have the following material properties; E = 20.7 GPa, 
υ=0.3, yield stress = 690 MPa with a linear hardening modulus of 1,540 MPa. The initial void 
fraction was assumed to be equal to .050. The initial and deformed shapes of the tensile 
specimen are shown in Fig. 11, which also depicts the regions of predicted high void growth. 
The effect of rate dependence is shown in Fig. 12, where an increased loading rate resulted in 
an increased normalized axial load (actual axial load/initial yield strength), with softening 
similar to the rate independent Gurson model results. Also shown in Fig. 12 is the conventional 
plasticity solution, which does not exhibit the pronounced softening predicted by the Gurson 
model. The conventional plasticity yield surface is also shown to be larger, with a higher strain 
to failure, than the porous material, a result confirmed by experimental results. For this 
simulation, the final void fraction was 0.70. A calculation was also performed to check the 
sensitivity of the solution to mesh size. The mesh in this calculation was twice the density of 
the initial simulation. The results of this calculation, shown in Fig. 13, indicate that there is 
some small mesh sensitivity of the solution, in the post failure phase, for the rate independent 
Gurson solution.  
 

 
 
 
 
 
Figure 11. Notched tensile 
specimen void growth as 
predicted by the Gurson model. 
Original mesh is shown in (a) 
and deformed mesh is shown in 
(b).  
 

 

 



  
Figure 12. Gurson model rate effects for a 
notched bar under displacement controlled axial 
loading. 
 

Figure 13. Gurson model mesh sensitivity for a 
notched bar under displacement controlled axial 
loading. 
 

 
 

Summary 
 
The large strain deformation response of 6061-T6 and Ti-6Al-4V has been evaluated over a 
range in strain rates from from 10-4 s-1 to over 104 s-1.  The results have been used to critically 
evaluate the strength and damage components of the JC material model.  A new model that 
addresses the shortcomings of the JC model was then developed and evaluated.  The model is 
derived from the rate equations that represent deformation mechanisms active during moderate 
and high rate loading.  We have also evaluated a model that accounts for the influence of void 
formation on yield and flow behavior of a ductile metal (the Gurson model).  The primary 
conclusions and observations relative to these three models are as follows. 
 
1. JC model.  For the alloys studied, the JC model can accurately represent the yield and work 
hardening behavior of the materials.  The JC model predicts higher failure strains than observed 
experimentally.  The most serious shortcoming of the JC model is its inability to represent the 
variation of flow stress with strain rate. 
 
2. Deformation mechanism model.  This model accounts for two sequential deformation 
mechanisms that are active at moderate and high deformation rates.  The mechanisms are 
discrete obstacle plasticity and drag controlled plasticity.  The model has been developed and 
evaluated against stress-strain rate data for the 6061-T6 alloy and theTi-6Al-4V alloy.  
Agreement between experimental results and model predictions is excellent. 
 
3. Gurson void growth model.  The Gurson void growth model has been introduced into the 
DYNA3D code.  The model was modified to account for the evolution of plastic strain and 
strain rate sensitivity.  The model was used in the DYNA3D code to simulate the response of a 
notched bar during tensile loading.   
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